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1. The Peculiar Problems of Mineral Wealth. Contemplation of the world's 
disappearing supplies of minerals, forests, and other exhaustible assets has led 
to demands for regulation of their exploitation. The feeling that these products 
are now too cheap for the good of future generations, that they are being 
selfishly exploited at too rapid a rate, and that in consequence of their excessive 
cheapness they are being produced and consumed wastefully has given rise to 
the conservation movement. The method ordinarily proposed to stop the 
wholesale devastation of irreplaceable natural resources, or of natural 
resources replaceable only with difficulty and long delay, is to forbid 
production at certain times and in certain regions or to hamper production by 
insisting that obsolete and inefficient methods be continued. The prohibitions 
against oil and mineral development and cutting timber on certain government 
lands have this justification, as have also closed seasons for fishand game and 
statutes forbidding certain highly efficient means of catching fish. Taxation 
would be a more economic method than publicly ordained inefficiency in the 
case of purely commercial activities such as mining and fishing for profit, if not 
also for sport fishing. However, the opposition of those who are making the 
profits, with the apathy of everyone else, is usually sufficient to prevent the 
diversion into the public treasury of any considerable part of the proceeds bf, 
the exploitation of natural resources. 

In contrast to the conservationist belief that a to o rapid explbital~ion of 
natural resources is taking place, we have the retarding influence of monopolies 
and combinations, whose growth in industries directly concerned with the 
exploitation of irreplaceable resources has been striking. If "combinations in 
restraint of trade" extort high prices from consumers and restrict production, 
can it be said that their products are too cheap and are being sold too rapidly? 

It may seem that the exploitation of an exhaustible natural resource can 
never be too slow for the public good. For every proposed rate of production 
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there will doubtless be some to point to the ultimate exhaustion which that rate 
will entail, and to urge more delay. But if it is agreed that the total supply is not 
to be reserved for our remote descendants and that there is an optimum rate of 
present production, then the tendency of monopoly and partial monopoly is to 
keep production below the optimum rate and to exact excessive prices from 
consumers. The conservation movement, in so far as it aims at absolute 
prohibitions rather than taxation or regulation in the interest of efficiency, may 
be accused of playing into the hands of those who are interested in maintaining 
high prices for the sake of their own pockets rather than of posterity. On the 
other hand, certain technical conditions most pronounced in the oil industry 
lead to great wastes of material and to expensive competitive drilling, losses 
which may be reduced by systems of control which involve delay in production. 
The government of the United States under the present administration has 
withdrawn oil lands from entry in order to conserve this asset, and has also 
taken steps toward prosecuting a group of California oil companies for 
conspiring to maintain unduly high prices, thus restricting production. Though 
these moves may at first sight appear contradictory in intent, they are really 
aimed at two distinct evils, a Scylla and Charybdis between which public policy 
must be steered. 

In addition to these public questions, the economics of exhaustible assets 
presents a whole forest of intriguing problems. The static-equilibrium type of 
economic theory which is now so well developed is plainly inadequate for an 
industry in which the indefinite maintenance of a steady rate of production is a 
physical impossibility, and which is therefore bound to decline. How much of 
the proceeds of a mine should be reckoned as income, and how much as return 
of capital? What is the value of a mine when its contents are Supposedly fully 
known, and what is the effect of uncertainty of estimate? If a mine-owner 
produces too rapidly, he will depress the price, perhaps to zero. If he produces 
too slowly, his profits, though larger, may be postponed farther into the future 
than the rate of interest warrants. Where is his golden mean? And how does this 
most profitable rate of production vary as exhaustion approaches? Is it more 
profitable to complete the extraction within a finite time, to extend it 
indefinitely in such a way that the amount remaining in the mine approaches 
zero as a limit, or to exploit so slowly that mining operations will not only 
continue at a diminishing rate forever but leave an amount in the ground which 
does not approach zero? Suppose the mine is publicly owned. How should 
exploitation take place for the greatest general good, and how does a course 
having such an objective compare with that of the profit-seeking entrepreneur? 
What of the plight of laborers and of subsidiary industries when a mine is 
exhausted? How can the state, by regulation or taxation, induce the mine- 
owner to adopt a schedule of production more in harmony with the public 
good? What about import duties on Coal and oil? And for these dynamical 
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systems what becomes of the classic theories of monopoly,  duopoly, and free 
competition? 

Problems of exhaustible assets are peculiarly liable to become entangled with 
the infinite. Not  only is there infinite time to consider, but also the possibility 
that for a necessity the price might increase without limit as the supply 
vanishes. If we are not to have property of infinite value, we must, in choosing 
empirical forms for cost and demand curves, take precautions to avoid 
assumptions, perfectly natural in static problems, which lead to such 
conditions. 

While a complete study of the subject would include semi-replaceable assets 
such as forests and stocks of fish, ranging gradually downward to such short- 
time operations as crop carryovers, this paper will be confined in scope to 
absolutely irreplaceable assets. The forests of a continent occupied by a new 
population may, for purposes of a first approximation at least, be regarded as 
composed of two parts, of which one will be replaced after cutting and the other 
will be consumed without replacement. The first part obeys the laws of static 
theory; the second, those of the economics of exhaustible assets. Wild life which 
may replenish itself if not too rapidly exploited presents questions of a different 
type. 

Problems of exhaustible assets cannot avoid the calculus of variations, 
including even the most recent researches in this branch of mathematics. 
However, elementary methods will be sufficient to bring out, in the next few 
pages, some of the principles of mine economics, with the help of various 
simplifying assumptions. These will later be generalized in considering a series 
of cases taking on gradually some of the complexities of the actual situation. 
We shall assume always that the owner of an exhaustible supply wishes to make 
the present value of all his future profits a maximum. The force of interest will 
be denoted by V, so that e x p ( -  Vt) is the present value of a unit of profit to be 
obtained after time t, interest rates being assumed to remain unchanged in the 
meantime. The case of variable interest rates gives rise to fairly obvious 
modifications (Hotelling, 1925). 

2. Free Competition. Since it is a matter of indifference to the owner of a mine 
whether he receives for a unit of his product a price Po now or a price Po exp(Tt) 
after time t, it is not unreasonable to expect that the price p will be a function of 
the time of the form p = Po exp(Tt). This will not apply to monopoly,  where the 
form of the demand function is bound to affect the rate of production, but is 
characteristic of, completely free competition. The various units of the mineral 
are then to be thought  of as being at any time all equally valuable, excepting for 
varying costs of placing them upon the market. They will be removed and used 
in order of accessibility, the most cheaply available first. If interest rates or 
degrees of impatience vary among the mine-owners, this fact will also affect the 
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order of extraction. Here p is to be interpreted as the net price received after 
paying the cost of extraction and placing upon the market--a  convention to 
which we shall adhere throughout• 

The formula: 

P=Po exp(Tt), (1) 

fixes the relative prices at different times under free competition. The absolute 
level, or the value Po of the price when t = 0, will depend upon demand and 
upon the total supply of the substance• Denoting the latter by a, and putting: 

q =f(p,  t), 

for the quantity taken at time t if the price is p, we have the equation: 

f )  q dr= I~f(po exp(Tt), t)d,=a, (2) 

the upper limit Tbeing the time of final exhaustion. Since q will then be zero, we 
shall have the equation: 

f(Po exp(Tt), T)=0,  (3) 

to determine T. 
The nature of these solutions will depend upon the function f(p,  t), which 

gives q. In accordance with the usual assumptions, we shall assume that it is a 
• = • I . . . . . .  

diminishing function of p, and depends upon the tame, if at all, an so sample a 
fashion that the equations all have unique solutions. 

Suppose, for example, that the demand function is given by: 

q= 5 - p ,  (0~p~<5) 

q = 0  for p~>5, 

independently of the time. 
As q diminishes and approaches zero, p increases toward the value 5, which 

represents the highest price anyone will pay. Thus at time T: 

Po exp(7 T) = 5. 

The relation (2) between the unknowns Po and T becomes in this case: 

a = I r (5 -Po  exp(Tt)) dt = 5T--Po(exp(vT ) -  1)/?. 
d o  

Eliminating Po, we have: 
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a/5 = T+ (exp(--7T)--  1)/7, 

that is: 

e x p ( - 7  T )=  1 + 7(a/5 -- T). 

Now, if we plot  as functions of T: 

Yl = exp( - 7 T), 

and: 

Y2 = 1 + 7 ( a / 5 -  T), 

we have a diminishing exponential  curve whose slope where it crosses the y-axis 
is - 7 ,  and a straight line with the same slope. The line crosses the y-axis at a 
higher point  than  the curve, since, when T =  0, y 1 < Y 2. Hence there is one and 
only one positive value of Tfor  which Yl = Y2- This value of T gives the time of 
complete exhaustion.  Clearly it is finite. 

If the demand  curve is fixed, the question whether  the t ime until  exhaust ion 
will be finite or infinite turns u p o n  whether  a finite or infinite value of p will be 
required to make  q vanish. For  the demand  function q = e x p ( -  bp), where b is a 
constant,  the exploitat ion will cont inue forever, though  of course at a gradually 
diminishing rate. If q = e -  tip, all will be exhausted in a finite time. In general, 
the higher the price anticipated when the rate of p roduc t ion  becomes extremely 
small, compared  with the price for a more  rapid product ion ,  the more  
protracted will be the period of operation.  

3. Maximum Social Value and State Interference. As in the static case, there is 
under free compet i t ion  in the absence of complicat ing factors a certain 
tendency toward  maximizing what  might  be called the "total  utility" but  is 
better called the "social value of the resource". For  a unit  of t ime this quanti ty 
may be defined as: 

u(q) = f ] p(q) dq, (4) 

where the integrand is a diminishing function and the upper  limit is the 
quanti ty actually placed upon  the marke t  and consumed.  If future enjoyment  
be discounted with force of interest 7, the present value is: 

V= f f  u[q(t)]exp(- 7t) dt. 

Since fo r q dt  is fixed, the product ion  schedule q(t) which makes  V a 
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maximum must be such that a unit increment in q will increase the integrand as 
much at one time as at another. That is: 

d 
qd-- u[q( t )]exp(  - yt), 

which by equation (4) equals p exp(-7t) ,  is to be a constant. Calling this 
constant Po, we have: 

P = P o  exp(Tt), 

the result (1) obtained in considering free competition. That this gives a genuine 
maximum appears from the fact that the second derivative is essentially 
negative, owing to the downward slope of the demand curve. 

This conclusion does not, of course, supply any more justification for laissez 
faire with the exploitation of natural resources than with other pursuits. It 
shows that the true basis of the conservation movement is not in any tendency 
inherent in competition under these ideal conditions. However, there are in 
extractive industries discrepancies from our assumed conditions leading to 
particularly wasteful forms of exploitation which might well be regulated in the 
public interest. We have tacitly assumed all the conditions fully known. Great 
wastes arise from the suddenness and unexpectedness of mineral discoveries, 
leading to wild rushes, immensely wasteful socially, to get hold of valuable 
property. 

Of this character is the drilling of"offset wells" along each side of a property 
line over a newly discovered oil pool. Each owner must drill and get the 
precious oil quickly, for otherwise his neighbors will get it all. Consequently 
great forests of tall derricks rise overnight at a cost of U.S.$50 000 or more each 
(1931 prices); whereas a much smaller number and a slower exploitation would 
be more economic. Incidentally, great volumes of natural gas and oil are lost 
because the suddenness of development makes adequate storage impossible 
(Stocking, 1928). 

The unexpectedness of mineral discoveries provides another reason than 
wastefulness for governmental control and for special taxation. Great profits of 
a thoroughly adventitious character arise in connection with mineral 
discoveries, and it is not good public policy to allow such profits to remain in 
private hands. Of course the prospector may be said to have earned his reward 
by effort and risk; but can this be said of the landowner who discovers the value 
of his subsoil purely by observing the results of his neighbors' mining and 
drilling? 

The market rate of interest 7 must be used by an entrepreneur in his 
calculations, but should it be used in determinations of social value and 
optimum public policy? The use ofS~ p dq as a measure of social value in a unit 
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of time, whereas the smaller quantity pq would be the greatest possible profit to 
an owner for the same extraction of material, suggests that a similar integral be 
used in connection with the various rates of time-preference. There is, however, 
an important difference between the two cases in that the rate of interest is set 
by a great variety of forces, chiefly independent of the particular commodity 
and industry in question, and is not greatly affected by variations in the output 
of the mine or oil well in question. It is likely, therefore, that in deciding 
questions of public policy relative to exhaustible resources, no large errors will 
be made by using the market rate of interest. Of course, changes in this rate are 
to be anticipated, especially in considering the remote future. If we look ahead 
to a distant time when all the resources of the earth will be near exhaustion, and 
the human race reduced to complete poverty, we may expect very high interest 
rates indeed. But the exhaustion of one or a few types of resources will not bring 
about this condition. 

The discounting of future values of u may be challenged on the ground that 
future pleasures are ethically equivalent to present pleasure of the same 
intensity. The reply to this is that capital is productive, that future pleasures are 
uncertain in a degree increasing with their remoteness in time, and that Vand u 
are concrete quantities, not symbols for pleasure. They measure the social 
value of the mine in the sense concerned with the total production of goods, but 
not properly its utility or the happiness to which it leads, since this depends 
upon the distribution of wealth, and is greater if the products of the mine benefit 
chiefly the poor than if they become articles of luxury. A platinum mine is of 
greater general utility when platinum is used for electrical and chemical 
purposes than when it is pre-empted by the jewelry trade. However, we must 
leave questions of distribution of wealth to be dealt with otherwise, perhaps by 
graded income and inheritance taxes, and consider the effects of various 
schedules of operation upon the total value of goods produced. It is for this 
reason that we are concerned with V. 

The general question of how much of its income a people should save has 
been beautifully treated by Ramsey (1928). 

Money metals, of course, occasion very special cause for public concern. Not 
only does gold production tend to destabilize prices; but if the uses in the arts 
can be neglected, the costs of discovery, extraction, and transportation from 
the mine are, from the social standpoint, wasted. 

Still a different reason for caution in deducing a laissez faire policy from the 
theoretical maximizing of V under "free" competition is that the actual 
conditions,~even when competition exists, are likely to be far removed from the 
ideal state we have been postulating. A large producing company can very 
commonly affect the price by varying its rate of marketing. There is then 
something of the monopoly element, with a tendency toward undue 
retardation of production and elevation of price. This will be considered further 
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in our last section. The monopoly  problem of course extends also to non- 
extractive industries; but in dealing with exhaustible resources there are some 
features of special interest, which will now be examined. 

4. Monopoly. The usual theory of monopoly  prices deals with the maximum 
point of the curve: 

y=pq, 

y being plotted as a function either of p or of q, each of these variables being a 
diminishing function of the other (Fig. 1). We now consider the problem of 

It 

8 

Figure 1. y = pq. The tangent turns counterclockwise. The value of the mine is 
proport ional  to the distance to O from the intersection of the tangent with the q- 

axis. 

choosing q as a function of t, subject to the condition: 

fo ~q d t =  (5) a, 

so as to maximize the present value: 

J= qp(q)exp(--Tt) dt, (6) 

of the profits of the owner of a mine. We do not restrict q to be a continuous 
function of t, though p will be considered a continuous function of q with a 
continuous first derivative which is nowhere positive. The upper limit of the 
integrals may  be taken as oe even if the exploitation is to take place only for a 
finite time T, for then q = 0 when t > T. 

This may or may  not be considered a problem in the calculus of variations; 
some definitions of that subject would exclude our problem because no 
derivative is involved under the integral signs, though the methods of the 
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science may  be applied to it. However,  the problem may be treated fairly simply 
by observing that: 

qp(q)exp(- yt ) -  2q, (7) 

where 2 is a Lagrange multiplier,  is to be a m a x i m u m  for every value of t. We 
must  therefore have: 

d 
e x p ( -  yt) ~q (pq) - 2 = 0, (8) 

and also: 

d 2 
e x p ( - y t )  ~ (pq) <0.  (9) 

Evidently equat ion (8) may  also be written: 

d dp 
y'= ~q (pq)=p+q ~qq = 2 exp(Tt), (10) 

the contrast  with the competi t ive conditions of the last section appearing in the 
term q dp/dq. 

The constant  2 is determined by solving equat ions (8) or (10) for q as a 
function of 2 and t and substi tut ing in equation (5). U p o n  integrating from 0 to 
T an equat ion will then be obtained for 2 in terms of T and of the amount  a 
initially in the mine,  which is here assumed to be known.  The additional 
equation required to determine T is obtained by put t ing q = 0 for t-- T. 

In general, if p takes on a finite value K as q approaches  zero, q dp/dq also 
remaining finite, equat ions (8) or (10) can be written: 

d(pq) 
- K exp(y(t-- T)). 

dq 

Suppose, for example, that  the demand  function is: 

p = (1 - exp( - Kq))/q 

= K-- K2q/2! + K3q 2/3 ! . . . .  , 

where K is a positive constant.  For  every positive value of q this expression is 
positive and has a negative derivative. As q approaches zero, p approaches K. 
We have: 

y = pq = 1 - e x p ( -  Kq), 

y' = K exp(--  Kq) = 2 exp(yt), 
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whence: 

q = (log 1(/2 -- ~t)/K, 

this expression holding when t is less than T, the t ime of ultimate exhaustion. 
When  t = T, q is of course zero. We have, therefore, put t ing q = 0 for t = T: 

log K/2=yT; 

and from equat ion (5): 

a= f f  (logK/2- ,t)dt/K=y f f  (T-t)dt/K 
= 7 T2/2K, 

so that: 

giving finally: 

T = ~ ,  

log K/2= 2x//~, 

q=y(x/2Ka/y-t)/K. 

5. Graphical Study: Discontinuous Solutions. The interpretat ion of equa- 
t ion (10) in terms of Fig. 1 is that  the rate of p roduc t ion  is the abscissa of the 
point  of tangency of a tangent line which rotates counterclockwise. The slope of 
this line is propor t ional  to a sum increasing at c o m p o u n d  interest. 

Other  graphical repesentations of the exhaust ion of natural  resources are 
possible. Drawing a curve giving y ' =  d(pq)/dq as a function of q (Fig. 2), we 

y'[ 

D B 

Figure 2. RS rises with increasing speed. Its length is the rate of production and 
diminishes. 
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have for the most  profitable rate of extraction the length of a hor izontal  line RS 
which rises like c o m p o u n d  interest. 

The waviness with which these curves have been drawn suggests that  the 
solution obtained in this way is not  unambiguous .  Such waviness will arise if 
the demand  function is, for example: 

p = b - ( q - 1 )  ~, (11) 

the derivative of which: 

- - 3 ( q -  1) 2 , 

is never positive. Here b is a constant ,  taken as 1 for Fig. 2. For  this demand 
function: 

y' = b - (4q - 1) (q - 1)2. 

When the rising line RS reaches the posit ion AC, the point  S whose abscissa 
represents the rate of p roduc t ion  might  apparent ly  cont inue along the curve to 
B and then j u m p  to D; or it might  j u m p  from A to C and then move  on through 
D; or it might  leave the arc AB at a point  between A and B. At first sight there 
would seem to be another  possibility, namely, to j u m p  from A to C, to move up 
the curve to B, and then to leap to D. But  this would  mean  increasing 
product ion  for a period. This is never so profitable as to run th rough  the same 
set of values of q in reverse order,  for the total profit  would be the same but  
would be received on the average more  quickly if the mos t  rapid product ion  
takes place at the beginning of the period. Hence we may  regard q as always 
diminishing, though  in this case with a discontinuity.  

The values of q between which the leap is made  in this case will be determined 
in Section 10; it will be shown that  the m a x i m u m  profit  will be reached if the 
monopol is t  moves horizontal ly from a certain point  F on AB to a point  G on 
CD. 

6. Value of a Mine Monopoly. To find the present value: 

t2 It t2 a¢ u = pq exp(--7t)  dt 
1 

of the profits which are to be realized in any interval t 1 to t 2 during which the 
maximizing value of q is a cont inuous  function of t, we integrate by parts: 

j~: = pq exp(- ' t) .]" + l  ftU d(pq) dq -~ nt, 7 , ~qq ~-~-exp(-7t) dt. 

When we put: 
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y=pq, (12) 

and apply equation (10), the last integral takes a simple form admitting direct 
integration. This gives, after applying equation (10) also to eliminate exp(-Tt)  
from the first term: 

J ~ = 7  q Y'JJt," 

Now upon differentiating equation (12), we find: 

dp 
qy,= y + q2 dq " 

Hence equation (13) can be written: 

o¢:: -)~q2 dP~ '2 (14) 
7Y' dq Jr," 

The expressions (13) and (14) provide very convenient means of computing 
the discounted profits. Their validity will be shown in Section 10 to extend to 
cases in which q is discontinuous. 

The expression: 

q-y /y '  

which appears in equation (13) is, in terms of Fig. 1, the difference between the 
abscissa and the subtangent of a point on the curve. It therefore equals the 
distance to the left of the origin of the point where a tangent to the curve meets 
the q-axis. 

The value of the mine when t = 0 is, in this notation, j r .  It is 2/7 times the 
distance from the origin to the point of intersection with the negative x-axis of 
the initial tangent to the curve of monopoly profit. 

7. Retardation of Production Under Monopoly. Although the rate of 
production may suffer discontinuities in spite of the demand function having a 
continuous derivative, these breaks will always occur during actual produc- 
tion, never at the end. Eventually q will trail off in a continuous fashion to zero. 
This means that the highest point of the curve of Fig. 2 corresponds to q = 0. To 
prove this, we use the monotonic decreasing character of p as a function of q, 
which shows that: 

y' (q) =p(q) + qp' (q), 

is, for positive values of q, less than p(q), and that this in turn is less than p(0). 
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Of d ~ f = o .  
c~x dt c3q 

In case f does not involve x, the first term is zero and the former case of 
monopoly  is obtained. 

In general the differential equation is of the second order in x, since q = dx/d t ,  
and so requires two terminal conditions. One of these is x = 0 for t = 0. The 
other end of the curve giving x as a function of t may be anywhere on the line 
x = a, or the curve may have this line as an asymptote. This indefiniteness will 
be settled by invoking again the condition that the discounted profit is a 
maximum. The "transversality condition" thus obtained: 

0f 
f - - q  ~ q = O ,  

that is: 

q2 Op 

is equivalent to the proposition that, if p always diminishes when q increases, 
the curve is tangent or asymptotic to the line x = a. Thus ultimately q descends 
continuously to zero. 

Suppose, for example, that q, x, and t all affect the net price linearly. Thus: 

p = ~ - f l q - c x  +gt .  

Ordinarily ~, fl, and c will be positive, but g may have either sign. The growth of 
population and the rising prices to consumers of competing exhaustible goods 
would lead to a positive value of g. On the other hand, the progress of science 
might lead to the gradual introduction of new substitutes for the commodity in 
question, tending to make g negative. The exhaustion of complementary 
commodities would also tend toward a negative value of 9. 

The differential equation reduces, for this linear demand function, to the 
linear form: 

d2x dx 
2fl -d~  - 2fly - ~  -- cTx = - gyt + g - ey. 

Since fl, c, and 7 are positive, the roots of the auxiliary equation are real and of 
opposite signs. Let m denote the positive and - n  the negative root. Since: 

m - - n = y ,  

m is numerically greater than n. The solution is: 
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whence: 

x = A exp(mt) + B exp( - nt )  + g t / c  --  2 f l9 /c  2 _ g /c7  + a/c ,  

q = A m  exp(mt) - B n  - , t  + g/c .  

Since x = 0  w h e n / = 0 :  

A + B - -  2flO/c 2 _ g /c7  + e / c  = O. 

Since x = a  and q = 0  at the time T of ultimate exhaustion: 

A exp (m T) + B exp ( - n T )  + g T i c  - 2 f l9 /c  2 _ g /c7  + e / c  - a = O, 

A m  exp(mT)-  B n  exp(-- n T )  + g /c  = O. 

From these equations A and B are eliminated by equating to zero the 
determinant of their coefficients and of the terms not containing A or B. After 
multiplying the first column by e x p ( - m T )  and the second by exp(nT), this 

e x p ( - m T )  

A =  1 

m 

gives: 

exp(n T) -- 2flg/c 2 _ g/c7 + e/c 

1 g T i c  - 2 f l g / c  z _ g / c  7 + e / c  - -  a 

- n g / c  

=0.  

Expanding and using the relations m -  n = 7, and m n  = c7/2f l ,  we have for A and 
its derivative with respect to T: 

A = (exp( -  m T )  - e x p ( n T ) ) g / c  + (n exp( - mT) 

+ m exp(n T)) ( g T / c  - 2 f lg/c  2 _ g /c7  + e / c  - a) 

+ (m + n)  (2 f lg /c  2 + g/c7  - a /c) ,  

A' = (exp(nT)-- exp(-- roT)) I T -  1/7 + ( e -  ac) /g]oT/23,  

the last expression being useful in applying Newton's method to find T. 
Obviously, the derivative changes sign for only one value of T; for this value A 
has a minimum if g is positive, a maximum if g is negative. 

We may measure time in such units that 7, the force of interest, is unity. If 
money is worth 4%, compounded quarterly, the unit of time will then be about 
25 years and 1 month.  With this convention let us consider an example in 
which there'is an upward secular trend in the price consumers are willing to 
pay: take e =  100, f l= 1, c =4 ,  g =  16, and a =  10. The net amount  received per 
unit is in this case: 

p =  l O 0 - - q - 4 x +  16t. 
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Substituting the values of the constants, and noting that m = 2 and n = 1, we 
have: 

e x p ( - 2 T )  exp(T) 19 

A =  1 1 4 T + 9  = ( 8 T + 1 4 ) e x p ( T ) + ( 4 T + 1 3 )  

2 --1 4 e x p ( - 2 T ) -  57, 

A '=  ( e x p ( T ) -  e x p ( - 2 T ) ) ( 8  T +  22). 

Evidently A < 0 for T =  0, A = + ov for T =  ~ ,  and A' > 0 for all positive values 
of T. Hence A = 0 has one and only one positive root. 

For  the trial value T =  1 we have: 

A=5.10 ,  A '=77.5 .  

Applying to T the correction - A / A ' -  - 0 . 0 7  roughly, we take T=0 .93  as a 
second approximation.  For  this value of T: 

A = -- 0.06, A' = 70.0, 

whence - A/A' = 0.001. 
The most  profitable schedule of extraction will therefore exhaust the mine in 

about  0.931 unit of time, or about  23 years and 4months ,  perhaps a 
surprisingly short time in view of the prospect  of obtaining an indefinitely 
higher price in the future, at the rate of increase of 16 per unit of time. 

In order that the time of working a mine be infinite, it is necessary not  only 
that the price shall increase indefinitely but  that it shall ultimately increase at 
least as fast as compound  interest. 

The last two equations for determining A and B now become, since 
exp(2T) = 6.4366 and e x p ( -  T) = 0.3942, 

6.4366A + 0.3942B + 12.724 = 0, 

12.8732A - 0.3942B + 4 = 0. 

Hence A = - 0 . 8 6 6 ,  B =  --18.13; so that: 

x =  - 0 . 8 6 6  e x p ( 2 t ) -  18.13 e x p ( - t ) + 4 t  + 19. 

As a check we observe that this expression for x vanishes when t = 0. 
Differentiating, we have: 

q =  - 1.732 exp(2t) + 18.13 e x p ( -  t ) + 4 ,  
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showing how the rate of production begins at 20.40 and gradually declines to 
zero. Substitution in the assumed expression for the net price gives: 

p =  1 0 0 - q - 4 x  + 16t 

= 20 + 5.196 exp(2t) + 54.39 e x p ( -  t), 

showing a decline from 79.60 at the beginning to 74.90 at exhaustion, owing to 
the greater cost of extracting the deeper parts of the deposit. The buyer of 
course pays an increasing, not a decreasing price, namely: 

p + 4 x = 1 0 0 - - q + 1 6 t  

= 9 6 +  1.732 exp(2t ) -  18.13 exp(-- t )+  16t. 

This increases from 79.60 to 114.90. 

9. The Optimum Course. To examine the course of exploitation of a mine 
which would be best socially, in contrast with the schedule which a well- 
informed but entirely selfish owner would adopt, we generalize the consider- 
ations of Section 3. Instead of the rate of profit pq, we must now deal with the 
social return per unit of time: 

u = f~  p(x, q, t) dq, 

x and t being held constant in the integration. Taking again the.paarket rate of 
interest as the appropriate discount factor for future enjoyments, we set: 

F=u exp(-Tt) ,  

and inquire what curve of exploitation will make the  total discounted social 
value: 

a maximum. 
The characteristic equation: 

reduces to: 

V= l Fdt, 

OF d OF 
- -  O ,  

Ox dt Oq 

Opd2x Opdx Ou Op 
Oq dt ~ + Ox dt 7P-Ox Ot" 
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The initial c9ndition is x = 0  for t =0.  The other end-point of the curve is 
movable on the line x -  a = 0, a being the amount  originally in the mine. The 
transversality condition: 

F - q  OF ~ q = 0 ,  

reduces to: 

u-pq=O. 

This is satisfied only for q--0, for otherwise we should have the equation: 

p = q p dq, 

stating that the ultimate price is the mean of the potential prices corresponding 
to lower values of q. Since p is assumed to decrease when q increases, this is 
impossible. Even if Op/aq is zero in isolated points, the equation will be 
impossible if, as is always held, this derivative is elsewhere negative. Hence q = 0 
at the time of exhaustion. 

If, as in Section 8, we suppose the demand function linear: 

p = e - f l q - c x  +gt, 

the characteristic equation becomes: 

d2x dx 
fl - d ~  - f17 ~ - c y x  = - # y t  + ~ -  ~ .  

This differs from the corresponding equation for monopoly only in that fl is 
here replaced by ill2. In a sense, this means that the decline of price, or marginal 
utility, with increase of supply counts just twice as much in affecting the rate of 
production, when this is in the control of a monopolist ,  as the public welfare 
would warrant. 

The analysis of Section 8 may be applied to this case without any qualitative 
change. The values ofm and n depend on fl, and are therefore changed. The time 
T until ultimate exhaustion will be reduced, if social value rather than 
monopoly profit is to be maximized. For  the numerical example given, T was 
found to be 0.931 unit of time under monopoly.  Repeating the calculation for 
the case in which maximum social value is the goal, we find as the best value 
only 0.6741 unit of time. 

For different values of the constants, even with a linear demand function, the 
mathematics may be less simple. For example, the equation A = 0 may have 
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two positive roots instead of one. This will be the case if the numerical 
illustration chosen be varied by supposing that the sign of g is reversed, owing 
to the progressive discovery of substitutes, the direct effect of passage of time 
being then to decrease instead of increase the price. In such cases a further 
examination is necessary of the two possible curves of development, to 
determine which will yield a greater monopoly profit or total discounted social 
value, according to our object. 

10. Discontinuous Solutions. Even if the rate of product ion q has a 
discontinuity, as in the example of Section 5, the condition that ~fdt shall be a 
maximum requires that each of the quantities: 

af f _ q  C3f 
t3q' c3q' 

must nevertheless be continuous (Caratheodory, 1904). This will be true 
whether f stands for discounted monopoly profit or discounted total utility. 

The equation (8) on p. 289, may be written: 

0q 

which shows, since the left-hand member is continuous, that 2 must have the 
s a m e  value before and after the discontinuity. 

When p is a function ofq alone, the two continuous quantities may be written 
in the notation of Section 4, y' exp( -Tt )  and (y-qy') exp(-Tt) ,  which shows 
that y' and y -  qy' are continuous. Thus the expression 2 ( q -  y/y') appearing in 
equation (13), p. 292, is continuous. Consequently the expressions (13) or (14) 
pertaining to the different time-intervals may simply be  added to obtain an 
expression of the same form. Hence the present value of the discounted future 
profits of the mine- -and  therefore of the mine--is  in such cases the difference 
between the values of: 

~(q-- Y/Y')/7, 

at present and at the time of exhaustion. 
We are now ready to answer such questions as that raised at the end of 

Section 5 as to the location of the discontinuity there shown to exist in the most 
profitable schd'dule of production when the demand function is: 

p = b - ( q - 1 )  3. 

Since in this case: 
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f =  pq e x p ( -  yt) = [bq - q(q - 1) 3 ] e x p ( -  yt), 

the two quantities: 

b -  (4q - 1)(q - 1) 2, 

3q2(q - l)2, 

are cont inuous.  Consequently:  

( 4 q -  1) ( q -  1) 2, 

and: 

q 2 ( q -  1)2, 

are cont inuous.  If ql denote the rate of p roduc t ion  just  before the sudden j u m p  
and q2 the initial rate after it, this means that: 

(4qx - 1) ( q l -  1) 2 = (4q2 - 1) (q2 - 1) 2, 

q2(q~ _ 1)2 = q2(q2. - 1)2. 

The only admissible solution is: 

q1=(3  + x/~)/4 = 1.1830, q2 = ( 3 -  x/~)/4 = 0.31699. 

11. Tests for a True Maximum.  The equat ions which have been given for 
finding the produc t ion  schedule of max imum profit or social value are 
necessary, not  sufficient, condit ions for maxima,  like the vanishing of the first 
derivative in the differential calculus. We must  also consider more  definitive 
tests. 

The integrals which have arisen in the problems of exhaustible assets are to 
be maxima,  not  necessarily for the mos t  general type of variation conceivable 
for a curve, but  only for the so-called "special weak" variations. The nature  of 
the economic  si tuation seems to preclude all variations which involve turning 
time backward,  increasing the rate of product ion ,  mainta ining two different 
rates of p roduc t ion  at the same time, or varying produc t ion  with infinite 
rapidity. Extremely sudden increases in p roduc t ion  usually involve special 
costs which will be borne only under  unexpected conditions,  and are to be 
avoided in long-term planning. Likewise sudden decreases involve social losses 
of great magni tude  such as unemployment ,  which even a selfish monopol i s t  will 
often try to prevent.  This will be considered further in the next section. It is 
indeed possible that  in some special cases these "strong" variations 
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might take on some economic significance, but such a situation would involve 
forces of a different sort from those with which economic theory is ordinarily 
concerned. 

The critical tests which must be applied are by the foregoing considerations 
reduced to two-- those  of Legendre and Jacobi (Forsyth, 1927). The Legendre 
test requires, in order that the total discounted utility or social value (Section 9) 
shall be a maximum, that: 

(~2U ~p 
-- < 0, Oq 2 (~q 

a condition which is always held to obtain save in exceptional cases. In order 
that the chosen curve shall yield a genuine maximum for a monopolist 's profit, 
the Legendre test requires that: 

O2(pq) 2 ~p t~2P 
¢9q 2 ~qq+ q~q 2<0" 

This means that the curve of Fig. 1 is convex upward at all points touched by 
the turning tangent. The re-entrant portions, if any, are passed over, producing 
discontinuities in the rate of production. 

When the solution of the characteristic equation has been found in the form: 

x =  0(t, ,4, B ) ,  

A and B being arbitrary constants, the Jacobi test requires that: 

shall not take the same value for two different values of t. For the example of 
Section 8 this critical quantity is simply exp((m + n)t), which obviously satisfies 
the test. The solution represents a real, not an illusory maximum for the 
monopolist 's profit. The like is true for the schedule of production maximizing 
the total discounted utility with the same demand function. Each case must, 
however, be examined separately, as the test might show in some instances that 
a seeming maximum could be improved. 

12. The N e e d  for Steadiness  in Product ion .  The demand function giving p may 
involve not o~nly the rate of production q, but also the rate of change q' of q. 
Such a condition would display a duality with that considered by Roos (1927a; 
1928) and Evans (1930), who hold that the quantity of a commodity which can 
be sold per unit of time depends ordinarily upon the rate of change of the price, 
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as well as upon the price itself. Ifp is a function of x, q, q', and t, the maximum of 
monopoly  profit or of social value can only be obtained if the course of 
exploitation satisfies a fourth-order differential equation. 

More geneally we might suppose that p and its rate of change p' are 
connected with x, q, q', and t by a relation: 

q~(p, p', x, q, q', t)=O. 

This presents a Lagrange problem, which can be dealt with by known methods 
(Bliss, unpublished). A further generalization is to suppose that the price, the 
quantity, and their derivatives are subject to a relation in the nature of a 
demand function which also involves an integral or integrals giving the effect of 
past prices and rates of consumption (Roos, 1927b). 

Capital investment in developing the mine and industries essential to it is a 
source of a need for steady production; the desirability of regular employment 
for labor is another• Under the term "capital" might possibly be included the 
costs, both to employers and to laborers, in drawing laborers to the mine from 
other places and occupations. The returning of these laborers to other 
occupations as production declines would have to be reckoned as part of the 
social cost. Whether this would enter into the mine-owner's costs would 
probably depend upon whether the 'laborers have at the beginning sufficient 
information and bargaining power to insist upon compensation for the cost to 
them of the return shift. 

Problems in which the fixity of capital investment plays a part in determining 
production schedules may be dealt with by introducing new variables xl ,  x 2 , 
• . . ,  to represent the various types of capital investment involved. In so far as 
these variables are continuous, the problem is that of maximizing an integral 
involving x, x l ,  x 2 , . . . ,  and their derivatives, using well-known methods. The 
simultaneous equations: 

c~f d t ~ f  0 
~x i dt dx i 

(i = 0, 1, 2 , . . .  ; x o = x; x' i = dxi/dt),  

are necessary for a maximum. The depreciation of mining equipment raises 
considerations of this kind. 

The cases considered in the earlier part of this paper all led to solutions in 
which the rate of production of a mine always decreases. By considering the 
influence of fixed investments and the cost of accelerating production at the 
beginning, we may be led to production curves which rise continuously from 
zero to a maximum, and then fall more slowly as exhaustion approaches. 
Certain production curves of this type have been found statistically to exist for 
whole industries of the extractive type, such as petroleum production (Van 
Orstrand, 1925). 
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13. Capital Value Taxes and Severance Taxes. An unanticipated tax upon the 
value of a mine will have no effect other than to transfer to the government 
treasury a part of the mine-owner's income. An anticipated tax at the rate ~ per 
year and payable continuously will have the same effects upon the value of the 
mine and the schedule of production as an increase of the force of interest by ~. 
This we shall now prove. 

From the income pq from the mine at t ime t must now be deducted the tax, 
~J(t). Consequently the value at time -c is: 

J(z)= f f [pq--~J(t)]exp(--7(t--z)) dr. 

This integral equation in J reduces by differentiation to a differential equation: 

J'(z) = -pq  + ~J(z) + 7J(z). 

The solution is found by well-known methods. The constant of integration is 
evaluated by means of the condition that J (T)=  O. We have: 

J(z) = pq exp(-- (e + 7) (t-- z)) dt, 

so that • is merely added to 7. 
Quite a different kind of levy is represented by the "severance tax".* Such a 

tax, of so much per unit of material extracted from the mine, tends to 
conservation. The ordinary theory of monopoly of an inexhaustible commo- 
dity suggests that the incidence of such a tax is divided between monopolist  and 
consumer, equally in the case of a linear demand function. However, for an 
exhaustible supply the division is in a different proportion, varying with time 
and the supply remaining. Indeed, the imposition of the tax will lead eventually 
to an actually lower price than as if there had been no tax. 

Consider the linear demand function: 

p=~--flq, 

* A variant is an ad valorem tax. A great deal of information and discussion concerning these taxes is 
contained in the biennial Report of the Minnesota State Tax Commission, 1928. F rom p. 111 of this repqrt it 
appears that  Alabama since 1927 has  had a severance tax of 2~ cents a ton on coal, 4½ cents a ton on iron ore, 
and 3% on quarry products; Mon tana  taxes coal extracted at 5 cents per ton; Arkansas imposes a tax of 2½% 
on the gross value of all natural  resources except coal and timber, 1% on coal, and 7 cents per 1000 board feet 
on timber. Minnesota  taxes iron ore extracted at 6% on value minus  cost of labor and materials used in 
mining, and also, assesses ore lands at a higher rate than other property for the general property tax. These 
taxes are not  based entirely on the conservation idea, but aim also at taxing persons outside the state, or 
"retaining for the state its natural  heritage". Since Minnesota produces about  two-thirds of the iron ore of the 
United States, the outside incidence is doubtless accomplished. Mexican petroleum taxes have the same 
object. The Minnesota  Commiss ion believes that prospecting for ore has virtually ceased on account of the 
high taxes. 
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and, for simplicity, no cost of production. The rate of net profit, after paying a 
tax v per unit extracted, will be: 

(p--  v)q = (a -- v)q - -  f l q 2 .  

As in Section 4, the derivative increases as compound interest: 

- v -  2flq = 2 exp(Tt). 

Since ultimately q = 0 and t = T, we obtain: 

a - - v = 2  exp(yT), 

whence eliminating 2 and solving for q: 

q = [1 - exp(y(t-  T))] (a - v)/Zfl. 

The time of exhaustion T is related to the amount originally in the mine 
through the equation: 

a =  I r q d t =  ( T T + e x p ( - T T ) -  1) (~-v) /2 f l~ ,  
3o 

whence: 

d T =  
2fla dv 

(~-v)2(1 - e x p ( - T T ) ) '  

showing how much of an increase in time of exploitation is likely to result from 
the imposition of a small severance tax. The effect upon the rate of production 
at time t is: 

~q dv + ~ d T  dq =Ovv 

= d r { -  1 + exp(~(t- T)) [1 + 2f17a/ (a-  v)(1 - e x p ( -  7T))] }/2ft. 

From the form of the demand function it follows that the increase in price at 
time t is: 

dp = - fl dq = dr{½- exp(7(t - T)) [½ + f l T a / ( a -  v) (1 - exp ( -  7T))]}. 

Ifa is very large, then so is T; the expression in curly brackets will, for moderate 
values of t, differ infinitesimally from ½, reducing to the case of monopoly with 
unlimited supplies. However, dp will always be less than ½ dv and, as 
exhaustion approaches, will decline and become negative. Finally, when t = T, 
the price of the tax-paid articles to buyers is lower by: 
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fl~av/(a- v) (1 - e x p ( -  y T)), 

than the ultimate price if there had been no tax. The price will, nevertheless, be 
so high that very little of the commodity will be bought. 

A tax on a monopolist  which will lead him to reduce his prices is reminiscent 
of Edgeworth's paradox of a tax on first-class railway tickets which makes the 
monopolistic (and unregulated) owner's most profitable course the reduction 
of the prices both of first- and of third-class tickets, besides paying the tax 
himself (Edgeworth, 1897). The case of a mine is, however, of a distinct species 
from Edgeworth's, and cannot be assimilated to it by treating ore extracted at 
different times as different commodities. Indeed, in the simple case of mine 
economics which we are now considering, the demands at different times are 
not correlated; supplies put  upon the market now and in the future neither 
complement nor compete with each other. Correlated demand, of a particular 
type was, on the other hand, an essential feature of Edgeworth's phenomenon.  

The ultimate lowering of price and the extension of the life of a mine as a 
result of a severance tax are not peculiar to the linear demand function, but 
hold similarly for any declining demand function p(q) whose slope is always 
finite. This general proposition does not depend upon the tax being small. 

The conclusion reached in the linear case that the division of the incidence of 
the tax is more favorable to the consumer than for an inexhaustible supply is 
probably true in general; at least this is indicated by an examination of a 
number of demand curves. However, the general proposition seems very 
difficult to prove. 

Since the severance tax postpones exhaustion, fails in considerable part on 
the monopolist,  and leads ultimately to an actual lowering of price, it would 
seem to be a good tax. It is particularly to be commended if the monopolist  is 
regarded as unfairly possessed of his property, and there is no other feasible 
means of taking away from him so great a portion of it as the severance tax will 
yield. However, the total wealth of the community may be diminished rather 
than increased by such a tax. Considering as in Section 3 the integral u of the 
prices p which buyers are willing to pay for quantities below that actually put 
on the market, and the time-integral U of values ofu discounted for interest, we 
have in the case of linear demand just discussed: 

for u= (e--flq) dq=eq-½flq 2 

If we wepe considering the portion of this social benefit which inures to 
consumers, we should have to subtract the portion pq which they pay to the 
monopolist,  an amount  from which he would have to subtract the tax, which 
benefits the state. But the sum of all these benefits is u, which is affected by the 
tax only as this affects the rate of production q. 
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If, for simplicity, we measure time in such units that  y = 1, the rate of 
production determined earlier in this section becomes: 

q = (1 - -exp( t - -  T))(0t-  v)/2fl. 

Substituting this in the expression for u and the result in U, we obtain: 

U =  fo  r u e x p ( - t )  dt 

= (a - v) [4~(1 - exp( - T)-- T exp(--  T)) 

- -  (a - v) (1 -- 2T exp( - T) -- exp( -- 2T))]/8fl. 

We differentiate U and then, to examine the effect of a small tax, put v = 0. The 
results simplify to: 

OU 
- -  = -- (1 -- exp(--  T))2a/4fl, 
8v 

8U 
~ = [ ( T +  1)exp(-- T ) -  exp(--2T)]a2/4fl .  

F rom the amount  initially in the mine: 

we obtain, as on p. 304: 

a = ( T +  e x p ( -  T)--  1)/2fl, 

dT  2fla 
dv a2(1 -- exp(--  T)) '  

when v = 0 .  Substituting here the preceding value for a we find, after 
simplification: 

dU dU OUdT a e x p ( T ) + e x p ( - T ) - 2 - T  2 

dv Ov + OT dv 413 e x p ( T ) -  1 

The numerator  of the last fraction may be expanded in a convergent series of 
powers of T in which all the terms are positive. Hence d U/dv is negative. 

Thus a small tax on a monopolized resource will diminish its total social 
value, at least if the demand function is linear. Whether  this is true for demand 
functions in general is an unsolved problem. 

We have here supposed the tax v to be constant,  permanent,  and fully 
foreseen. Since an unforeseen tax will have unforeseen results, we can scarcely 
build up a general theory of such taxes. However,  any tax of amount  varying 
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with time in a manner definitely fixed upon in advance will have predictable 
results. In this connection, an interesting problem is to fix upon a schedule of 
taxation v, which may involve the rate of production q and the cumulated 
production x, as well as the time, such that, when the monopolist  then chooses 
his schedule of production to maximize his profit, the social value U will be 
greater than as if any other tax schedule had been adopted. This leads to a 
problem of Lagrange type in the calculus of variations, one end-point being 
variable. Putting q = dx/dt and: 

J= f f f ( x ,  q, v, t) dt, U= f r  o F(x, q, t) dt, 

the problem is to choose v, subject to the differential relation: 

ef  f0v d / e f  _ 

so that U will be a maximum. In general, of course, a still greater value of U 
would be obtainable, at least in theory, by public ownership and operation. 

14. Mine Income and Depletion. With income taxes we are not concerned 
except for the determination of the amount  of the income from a mine. The 
problem of allowance for depletion has been a perplexing one. It has been said 
that if the value of ore removed from the ground could be, claimed as a 
deduction from income, then a mining company having no income except from 
the sale of ore could escape payment of income tax entirely. The fallacy of this 
contention may be examined by considering the value of the mine at time t: 

J ( t )=  f r  o pq exp( -~( - r - t ) )  dT. 

In this integral p and q have the values corresponding to the time -c, later than t, 
assigned by whatever production schedule has been adopted, whether this 
results from competition, from a desire to maximize monopoly profit, or from 
any other set of conditions. The net income consists of the return from sales of 
material removed (cost of production and selling having as usual been 
deducted), minus the decrease in the value of the mine. It therefore equals, per 
unit of time, 

pq + dJ/dt; 

and from the expression for J, this is exactly yJ. In other words, any particular 
production schedule fixes the value of the mine at such a figure that the income 
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at any time, after allowing for depletion, is exactly equal to the interest on the 
value of the investment at that time. 

But, although the rate of decline in value of a mine seems a logical quantity to 
define as depletion and to deduct from income, such is not the practice of 
income-tax administrations, at least in the United States. The value of the 
property upon acquisition, or on March 1, 1913, a date shortly before the 
inauguration of the tax, if acquired before that time, is taken as a basis and 
divided by the number of units of material estimated to have been in the ground 
at that time. The resulting "unit of depletion", an amount  of money, is 
multiplied by the number of tons, pounds, or ounces of material removed in a 
year to give the depletion for that year. The total of depletion allowances must 
not exceed the original value of the property. 

The differences between the two methods of calculating depletion arise from 
the uncertainties of valuation and of forecasting price, demand, production, 
costs, interest rates, and amount  of material remaining. If the theoretical 
method were applied, a year in which the mine failed to operate would still be 
set down as yielding an income equal to the interest on the investment value. 
This seems anomalous only because of another defect, from the theoretical 
standpoint,  in income-tax laws: the non-taxation of increase in value of a 
property until the sale of the property. During a year of idleness, if foreseen, the 
value of the property is actually increasing, for the idle year has been considered 
in fixing the value at the beginning of the year. 

An amendment  made to the United States federal income-tax law in 1918 
provides that the valuation upon which depletion is calculated may under 
certain circumstances be taken, not as the value of the property when acquired 
or in 1913, but the higher value which it later took when its mineral content was 
discovered. This provision has the effect of materially increasing depletion 
allowances, and so of reducing tax payments. The sudden increase in value 
when the mineral is discovered might well be regarded as taxable income, but is 
not so regarded by the law unless the property is immediately sold. The framers 
of the statute seem indeed, according to its language, to have considered this 
increase in value a reward for the efforts and risks of prospecting, which would 
suggest that it is of the nature of income, a reasonable position. However, the 
object of the amendment  is to treat this increment as pre-existing capital value, 
to be returned to the owner by sale of the mineral. The amendment appears to 
be inconsistent and quite too generous to the owners particularly affected. 

15. Duopoly. Intermediate between monopoly and perfect competition, and 
more closely related than either to the real economic world, is the condition in 
which there are a few competing sellers. In a former paper (Hotelling, 1929) this 
situation was discussed for the static case, with special reference to a factor 
usually ignored, the existence with reference to each seller of groups of buyers 
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who have a special advantage in dealing with him in spite of possible lower 
prices elsewhere. More than one price in the same market is then possible, and 
with a sort of quasi-stability which sets a lower limit to prices, as well as the 
known upper limit of monopoly price. 

For exhaustible resources the corresponding problems of competition 
among a small number of entrepreneurs may be studied in the first instance by 
means of the jointly stationary values of the several integrals representing 
discounted profits. We need not confine ourselves, as we have done for 
convenience in dealing with monopoly,  to a single mine for each competitor. 
Let there be m competitors, and let the one numbered i control n i mines, whose 
production rates and initial contents we shall denote by qi~ . . . .  , ~qin,, and a~, 
. . . ,  a~n,, respectively. The demand functions will be intercorrelated, both 
among the mines owned by each competitor and between the mines of different 
concerns. Consequently the m integrals J~ representing the discounted profits 
will involve in their integrands f~ all the q~, as well as some at least of the 
cumulated productions xij = ~ q~j dt. If the i t~ o w n e r  wishes to make his profit a 
maximum, assuming the production rates of the others to have been fixed 
upon, he will adjust his n~ production rates so that: 

c~f~ d Of~ _ 0  ( j = l ,  2 , . . . ,  n,). 
cgx~j dt c3q~j 

Continuing the analogy with the static case, we are to imagine that the other 
competitors, hearing of his plans, do likewise, altering their schedules to 
conform to equations resembling those above. When the i th o w n e r  learns of 
their changed plans, he will in turn readjust. The only possible final equilibrium 
with a settled schedule of production for each mine will be determined by the 
solution of the set of differential equations of this type, which are exactly as 
numerous as the mines, and therefore as the variables to be determined. All this 
is a direct generalization of the case of inexhaustible supplies. But we shall show 
that the solution tends to overstate the production rates and understate the 
prices of competing mines. 

Doubts in plenty have been cast upon the result in the simpler case, and the 
reasons which can there be adduced in favor of the solution are even more 
painfully inadequate when the supplies are of limited amount.  The chief 
difficulty with the problem of a small number of sellers consists in the fact that 
each, in modifying his conduct in accordance with what he thinks the others are 
going to do, 'may or may not take account of the effect upon their prices and 
policies of his own prospective acts. There is an "equilibrium point", such that 
neither of two sellers can, by changing his price, increase his rate of profit while 
the other's price remains unchanged. However, if one seller increases his price 
moderately, thus making some immediate sacrifice, the other will find his most 
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profitable course to lie in increasing his own price; and then, if the original 
increase is not too great, both will obtain higher profits than at "equilibrium". 
But that the tendency to cut prices below the equilibrium is less important than 
has been supposed is shown in the article just referred to. 

With an exhaustible supply, and therefore with less to lose by a temporary 
reduction in' sales, a seller will be particularly inclined to experiment by raising 
his price above the theoretical level in the hope that his competitors will also 
increase their prices. For the loss of business incurred while waiting for them to 
do so he can in this case take comfort, not merely in the prospect of 
approximating his old sales at the higher price in the near future but also in the 
fact that he is conserving his supplies for a time when general exhaustion will be 
nearer and even the theoretical price will be higher. Thus a general condition 
may be expected of higher prices and lower rates of production than are given 
by the solution of the simultaneous characteristic equations. 

For complementary products, such as iron and coal, the situation is in some 
ways reversed. Edgeworth in his Papers Relating to Political Economy points 
out that when two complementary goods are separately monopolized the 
consumer is worse off than if both were under the control of the same 
monopolist. This assumes the equilibrium solution to hold. The tentative 
deviations from equilibrium made in order to influence the other party may 
now be in either direction, according as the nature of the demand function and 
other conditions make it more profitable to move toward the lower prices and 
larger sales characterizing the maximum joint profit, or to raise one's price in 
an effort to force one's rival to lower his in order to maintain sales. When the 
supplies of the complementary goods are exhaustible, the same indeterminate- 
ness exists. 

A very different problem of duopoly involving the calculus of variations has 
been studied by Roos (t925; 1927b) who finds that the respective profits take 
true maximum values. However, as in the static case, no definitively stable 
equilibrium is insured by the fact that each profit is a maximum when the other 
is considered fixed, since the acts of one competitor affect those of the other. 
The calculus of variations is used by Roos and Evans (1930) to deal with cost 
and demand functions involving the rate of change of price as well as the price. 
Such functions we have for concreteness and simplicity avoided, but if they 
should prove to be of importance in mine economics the foregoing treatment 
can readily be extended to them (cf. Section 12). Evans and Roos are not 
concerned with exhaustible assets, and assume that at any time all competitors 
sell at the same price. 

The problems of exhaustible resources involve the time in another way 
besides bringing on exhaustion and higher prices, namely, as bringing 
increased information, both as to the physical extent and condition of the 
resource and as to the economic phenomena attending its extraction and sale. 
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In the most elementary discussions of exchange, as in bartering nuts for apples, 
as well as in discussions of duopoly, a time element is always introduced to 
show a gradual approach to equilibrium or a breaking away from it. Such time 
effects are equally or in even greater measure involved in exploiting 
irreplaceable assets, entangling with the secular tendencies peculiar to this class 
of goods. With duopoly in the sale of exhaustible resources the possibilities of 
bargaining, bluff, and bluster become remarkably intricate. 

The periodic price wars which break the monotony of gasoline prices on the 
American Pacific Coast are an interesting phenomenon.  Along most of the 
fifteen-hundred-mile strip west of the summits of the Sierras a few large 
companies dominate the oil business. In the southern California oil fields, 
however, numerous small concerns sell gasoline at cut prices. Cheap gasoline is 
for the most part not distilled from oil but is filtered from natural gas, and may 
be of slightly inferior quality; nevertheless, it is an acceptable motor  fuel. The 
extreme mobility of purchasers of gasoline reduces to a minimum the element 
of gradualness in the shift of demand from seller to seller with change of price. 
Ordinarily, the price outside of southern California is held steady by agreement 
among the five or six major companies, being fixed in each of several large areas 
according to distance from the oil fields. But every year or two a price war 
occurs, in which prices go down day by day to extremely low levels, sometimes 
almost to the point of giving away gasoline, and certainly below the cost of 
distribution. From a normal price of 20 to 23 cents a gallon the price sometimes 
drops to 6 or 7 cents, including the tax of 3 cents. Peace is made and the old 
high price restored after a few weeks of universal joy-riding and storage in every 
available container, even in bath tubs. The interesting thing is the slowness of 
the spread of these contests, which usually begin in southern California. The 
companies fight each other violently there, and a few weeks later in northern 
California, while in some cases maintaining full prices in Oregon and 
Washington. These affrays give an example of the instability of competition 
when variations of price with location as well as time complicate commerce in 
an exhaustible asset. 
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